The Determinants of Perturbation Connected with a Dissipative Sturm-Liouville Operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sturm-liouville Operator with General Boundary Conditions

We classify the general linear boundary conditions involving u′′, u′ and u on the boundary {a, b} so that a Sturm-Liouville operator on [a, b] has a unique self-adjoint extension on a suitable Hilbert space.

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

A Discontinuous Sturm-Liouville Operator With Indefinite Weight

The research is financed by the Natural Science Foundation of China and the National Natural Science Foundation of Neimongo. No. 10661008 and 200711020102 (Sponsoring information) Abstract In this paper, we consider an indefinite Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions. In an appropriate space K, we define a new self-adjoint operato...

متن کامل

Functional determinants for general Sturm-Liouville problems

Simple and analytically tractable expressions for functional determinants are known to exist for many cases of interest. We extend the range of situations for which these hold to cover systems of self-adjoint operators of the Sturm-Liouville type with arbitrary linear boundary conditions. The results hold whether or not the operators have negative eigenvalues. The physically important case of f...

متن کامل

Spectral analysis of a self-similar Sturm-Liouville operator

In this text we describe the spectral nature (pure point or continuous) of a self-similar Sturm-Liouville operator on the line or the half-line. This is motivated by the more general problem of understanding the spectrum of Laplace operators on unbounded finitely ramified self-similar sets. In this context, this furnishes the first example of a description of the spectral nature of the operator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1995

ISSN: 0022-247X

DOI: 10.1006/jmaa.1995.1285